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Dynamic combinatorial chemistry (DCC) has emerged as a new
strategy for the discovery of novel host-guest systems.1 In theory
the dynamic combinatorial approach integrates preparation,
identification, and high-yield isolation of receptors in one process.2

To date very few examples exist where this is actually demon-
strated in practice.3,4 Herein we report one such example where
Li + ions select an unpredictable cyclic pseudopeptide receptor
from a small dynamic combinatorial library (DCL) of at least 10
different macrocycles. The cation converts this complex mixture
into one that contains 98% of the Li+ receptor. This is the first
time that a new receptor has been identified and isolated from a
DCL.

DCLs differ from conventional combinatorial libraries in that
each library member is assembled from building blocks connected
through reVersible bonds. As a consequence, all members are
interconverting to give a thermodynamically controlled product
distribution. Addition of a guest molecule which binds and
stabilizes one receptor in the library will increase the concentration
of this receptor in the mixture at the expense of the other members.

Since our initial reports on the preparation of “living mixtures”
of macrocycles,5 research on DCLs has mainly focused on the
development of chemistries that allow controlled reversible bond
formation. Several reactions are now available that enable the
formation of diverse DCLs under one set of conditions, whereas
under other conditions the libraries become static (i.e., exchange
is switched off) whereupon individual library members can be
isolated.6 Hence, research into DCLs is now entering its critical
phase, where it has to be proven that the concept is actually
practical.

We have recently developed the use of hydrazone chemistry
to prepare DCLs.6f By mixing hydrazides and protected aldehydes

under acidic conditions, hydrazone formation occurs rapidly
(Scheme 1). The presence of acid also ensures efficient exchange
of the generated hydrazones. The resulting equilibrium mixture
can be frozen upon neutralization of the reaction mixture, allowing
for the isolation of individual library members.

Using hydrazone exchange we have previously developed
DCLs of macrocycles from building blocks that contain both
aldehyde and hydrazide functionalities linked to a central amino
acid or peptide unit.6f We focus here on the recognition properties
of a library of macrocycles prepared from building block1,
containingL-phenylalanine (A),L-proline (B), and an aromatic
unit (C) (Scheme 2). This building block (i) has the potential to
engage in hydrogen-bonding interactions, (ii) can offer Lewis-
basic carbonyls to Lewis acids, and (iii) has aromatic rings for
π-π and cation-π interactions.

Acid-catalyzed cyclization of building block1 generated a DCL
of macrocycles.7 The mixture was analyzed by electrospray mass
spectrometry (ESI-MS) and consisted of a series of macrocyclic
polyhydrazones ranging from dimer to undecamer. Combination
of ESI-MS and HPLC allowed the assignment of the major peaks
in the chromatogram as shown in Figure 1a.

Given the range of potential recognition properties of1 we
have screened the library for its affinity for cations. When the
dynamic library was exposed to different quaternary ammonium
iodides,8 no significant changes in the product distribution
occurred. Likewise, addition of KI, RbI, and CsI did not affect
the product distribution. However, upon addition of NaI a
significant shift toward cyclic trimer was observed (Figure 1).
Introduction of LiI into the reaction mixture generated the most
dramatic response from the library. The amplified pseudonon-
apeptide3 now accounts for 98% of the peptide material in the
library.9 The selected trimer was isolated by successive filtration
through a basic resin (neutralization) and silica gel.10

The interaction between Li+ and the amplified trimer3 was
studied using1H NMR, 13C NMR, 7Li NMR, and FT-IR. Binding
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of lithium to the trimer was found to be slow on the NMR time
scale, giving rise to separate signals for bound and free Li+ (Figure
2). A titration experiment established that lithium binds to the
trimer in a 1:1 stoichiometry.

The 1H NMR spectrum of the trimer11 was strongly affected
by the presence of Li+. Addition of 1 equiv of LiI to a 5 mM
solution of3 in CDCl3/MeOD (98:2) produces significant shifts
in every resonance of the receptor (Figure 3). This indicates that
there is a substantial change in the geometry of the trimer upon
binding to Li+; hence, the receptor isnot pre-organized. Appar-
ently the guest selects one conformer out of the many possible.
From the change in the chemical shifts in the spectrum an
equilibrium constant for binding of Li+ to the trimer of 4× 104

M-1 was estimated.
It has been reported that lithium salts can alter the conforma-

tional properties of peptides by coordination to carbonyls.12 A
similar interaction is suggested in our system by a shift in the

carbonyl-stretching frequency in the FT-IR spectrum from 1684
to 1666 cm-1 after complexation with LiI. In addition, the13C
NMR spectrum of3 shows downfield shifts of 1.0, 4.5, and 4.5
ppm for the signals corresponding to the carbonyl carbons of the
proline and phenylalanine units,13 and to the hydrazone carbon
(CdN), respectively.

In summary, we have described a one-pot synthesis, identifica-
tion, and isolation of a new receptor for Li+ from a dynamic
combinatorial library. The receptor is rather flexible and changes
its conformation upon binding. Such flexible receptors, although
widespread in nature, are still extremely difficult to create by
design. In fact, despite a large amount of data on the3‚Li +

complex, we still do not know its exact conformation. Hence,3
would not have been discovered through design. This illustrates
the potential of the dynamic combinatorial approach for the
discovery of novel conformationally flexible host (or guest)
molecules. We are currently studying the recognition properties
of DCLs prepared from different building blocks related to1 in
order to identify receptors for other cations.
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Figure 1. HPLC traces of the library (a) control without template, (b)
in the presence of NaI, (c) in the presence of LiI.

Figure 2. 155.5 MHz7Li NMR spectra of a 5 mM solution of LiI in
CDCl3/MeOD (98:2): (a) in absence; (b) in the presence of 0.25 equiv;
(c) 0.50 equiv; (d) 0.75 equiv; and (e) 1.00 equiv of3.

Figure 3. 500 MHz 1H NMR spectra of3 in CDCl3/MeOD (98:2). (a)
In absence of guest, (b) in the presence of 1 equiv of LiI.
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